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Abstract Grid graphs on the plane, torus and cylinder are finite 2-connected bipartite
graphs embedded on the plane, torus and cylinder, respectively, whose every interior
face is bounded by a quadrangle. Let k be a positive integer, a grid graph is k-resonant
if the deletion of any i ≤ k vertex-disjoint quadrangles from G results in a graph
either having a perfect matching or being empty. If G is k-resonant for any integer
k ≥ 1, then it is called maximally resonant. In this study, we provide a complete
characterization for the k-resonance of grid graphs Pm × Pn on plane, Cm × Cn on
torus and Pm × Cn on cylinder.
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1 Introduction

The concept of resonance originates from the conjugated circuits method which was
early found in [29] and [8,9] and Clar’s aromatic sextet theory [4] and Randić’s
conjugated circuit model [21–24]. Then Klein [12] clarified the connection of Clar’s
aromatic sextet theory with the conjugated circuits method. In mathematics [19], a
conjugated circuit is named an alternating cycle. A matching (resp. perfect matching)
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of a graph is a set of its edges such that every vertex of the graph is incident with
at most (resp. exactly) one edge in this set. For a graph G with a matching M , an
M-alternating cycle is a cycle of which the edges appear alternately in and out of M .

The k-resonance of plane molecular graphs have been investigated extensively
[6,13,15,17,32,35]. In the investigation of the resonance of some molecular graphs,
it was found that the k-resonance of the molecular graphs indicates the stability of
the corresponding moleculars a great deal. On the other hand, the k-resonance of
graphs seems relating to the study of matchings problems. Besides the plane molecular
graphs, graphs on sphere, cylinder, torus and Klein-bottle were also studied extensively
[16,26,27,30,31]. We focus on the k-resonance of grid graphs on plane, torus and
cylinder in this study.

A plane grid graph is a finite plane 2-connected bipartite graph whose every interior
face is bounded by a quadrangle. It is also called polyomino graphs [1], square-cell
configurations [7] or chess-boards [5]. Polyomino graphs have useful applications in
statistical physics and in modeling problems of surface chemistry (please refer to ref.
[7] and the references therein). They are also modelings of many interesting combi-
natorial subjects, such as hypergraphs [1], domination problem [5], rook polynomials
[20], etc. In fact, problems based on perfect matchings was extensively studied on
fragments of the square-planar net [2,10,14,25,34]. Also, Kivelson developed the
conjugated circuits method for the polyomino graphs [11].

A toroidal grid graph (a grid graph on the surface torus) is the product Cm × Cn

embedded on the torus such that each face is bounded by a quadrangle. A grid graph
on the cylinder is a grid graph embedded on the cylinder such that each face, except
the two infinite open ends, is bounded by a quadrangle. Let k be a positive integer, a
plane grid graph or a toroidal grid graph or a grid graph on cylinder G is k-resonant
if the deletion of any i (≤ k) vertex-disjoint quadrangles from G results in a graph
either having perfect matchings or being empty.

If G is k-resonant for any integer k ≥ 1, then it is called maximally resonant. In the
paper [17], all maximally resonant plane grid graphs were characterized. In fact, the
least integer k such that a k-resonant graph is maximally resonant was determined for
all the considered molecular graphs, such as benzenoid systems [35], coronoid systems
[3], open-end nanotubes [31], toroidal polyhexes [26,33], Klein-bottle polyhexes [27],
fullerene graphs [30], B-N fullerene graphs [32] and other graphs [18,28].

In this paper, we provide a complete characterization for the k-resonance of grid
graphs Pm × Pn on plane, Cm × Cn on torus and Pm × Cn on cylinder. As plane grid
graphs, the least integer k such that a k-resonant grid graph on torus or cylinder is
maximally resonant is 4.

A k-resonant grid graph should have even vertices. Hence in the grid graphs Pm ×
Pn, Cm × Cn and Pm × Cn considered here, at least one of m and n is even.

2 k-Resonance of plane grid graphs Pm × Pn

Note that a graph Pm × Pn (m, n � 2, n mod 2 = 0) has perfect matchings. Then the
k-resonance of plane grid graphs Pm × Pn (m, n � 2, n mod 2 = 0) can be obtained
by the following facts.
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Fig. 1 P3 × Pn , where n ≥ 6
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Fig. 2 Pm × Pn , where
m ≥ 5, n ≥ 6
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Lemma 2.1 Pm × Pn (m, n � 2, n mod 2 = 0) is 1-resonant.

Proof Let f1 be an arbitrary square of Pm × Pn . Then it belongs to a subgraph iso-
morphic to P2 × Pn , which is k-resonant (k � 1) [17]. The leaving graph has perfect
matchings. Hence Pm × Pn is 1-resonant. ��
Lemma 2.2 Pm × Pn (m, n � 2, n mod 2 = 0) is not 2-resonant if and only if m = 3
and n ≥ 6.

Proof P2×Pn and P4×Pn are maximally resonant [17]. Now we should only consider
the cases of P3 × Pn (n ≥ 6) and Pm × Pn (m ≥ 5, n ≥ 6). Clearly, by Fig. 1, one
can see that P3 × Pn (n ≥ 6) is not 2-resonance since (P3 × Pn) − h1 − h2 leaves an
odd component with five vertices.

Now we consider H ∼= Pm × Pn (m ≥ 5, n ≥ 6) with m − 1 rows of squares. Let
f1 and f2 be any two disjoint quadrangles in H . Suppose that r1, r2 are the rows that
f1, f2 lie, respectively (see Fig. 2). If |r1 − r2| ≤ 1, consider a subgraph H ′ of H
isomorphic to P4 × Pn , which contains both f1 and f2. Certainly, H ′ − f1 − f2 has
a perfect matching. On the other hand, H − H ′ has perfect matchings, since its every
component is isomorphic to Pk × Pn with k � 1 and n even. Hence H − f1 − f2
has perfect matchings. If |r1 − r2| � 2, then f1 and f2 are contained in two disjoint
subgraphs of H isomorphic to P2 × Pn , which are k-resonant (k � 1). And the leaving
graph has perfect matchings. Hence H ∼= Pm × Pn (m ≥ 5, n ≥ 6) is 2-resonant. ��

Lemma 2.3 Pn × Pm (m, n � 2) is 3-resonant if and only if it is isomorphic to
P2 × Pm (m ≥ 2) or P4 × Pm (m ≥ 3).

Proof P2 × Pm and P4 × Pm are 3-resonant [17]. By lemma 2.2, we know that
P3 × Pm (m ≥ 6) is not 2-resonant. Hence it is not 3-resonant. By Fig. 3, it can be
seen that Pm × Pn (m, n ≥ 5) is not 3-resonant, since by deleting h1, h2 and h3 there
will be an odd component with five vertices. ��
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Fig. 3 Pm × Pn , where
m, n ≥ 5

1h

2h

3h

mP

nP

By Theorems 2.1 in [17], we know that P2 × Pn and P4 × Pm (m, n ≥ 2) is k-
resonant for any integer k � 1 and P3 × Pm (m ≥ 6), Pm × Pn (m, n ≥ 5) are not
k-resonant for k � 4. Together with Lemmas 2.1 and 2.2, k-resonance of plane grid
graphs Pm × Pn (m, n ≥ 2) is obtained.

Theorem 2.4 The k-resonance of plane grid graphs Pm × Pn (m, n � 2 and at least
one of them is even) is given in the following table.

P2 × Pn , P4 × Pn P3 × Pn (n ≥ 6) Pm × Pn (m, n ≥ 5)

1-Resonant Yes Yes Yes
2-Resonant Yes No Yes
3-Resonant Yes No No
� 4-Resonant Yes No No

3 k-Resonance of grid graphs on torus

A toroidal grid graph Cm × Cn embedded on the torus such that each face is bounded
a quadrangle can be also obtained from Pm × Pn by gluing the pendent half edges
with the same labels into one as shown in Fig. 4.

On the other hand, note that for a set F of disjoint faces of a graph G, if G − F has
a spanning subgraph with a perfect matching, then G − F has a perfect matching.

Lemma 3.1 A toroidal grid graph Cm × Cn (m, n ≥ 5) is not k-resonant for any
integer k � 4.

Proof Let h1, h2, h3 and h4 be the four vertex-disjoint quadrangles as shown in Fig. 5.
Then Cm × Cn − h1 − h2 − h3 − h4 has an isolated vertex v when m, n ≥ 5. So it is
not k-resonant for any integer k � 4. ��

Lemma 3.2 A toroidal grid graph C4 × Cm (m ≥ 2) is k-resonant (k � 1).
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Fig. 4 A grid graph Cm × Cn on torus

Fig. 5 C5 × C6 on torus
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Proof Let F be any set of vertex-disjoint quadrangles of C4 × Cm and H denote the
subgraph of C4 × Cm induced by all the columns of quadrangles containing at least
one element of F . Then write H ′=C4 × Cm − H . Clearly, every component of H or
H ′ is isomorphic to a C4 × Pmi for some mi ≥ 1. H ′ has perfect matchings. We shall
show in what follows that for any component H1 of H , either H1 − F is empty or it
has perfect matchings and so the lemma follows.

If H1 consists of one column, then H1 − F is empty or is a quadrangle with perfect
matchings. Now consider the case when H1 consists of at least two columns. It is not
difficult to see that each column of H1 contains a unique quadrangle of F and that all
these quadrangles must lie in two separating rows alternatively as in Fig. 6. No matter
whether H1 has an odd or even number of columns, H1 − F consists of two disjoint
edges e′ and e′′ as is illustrated in Fig. 6. These two edges enter into a perfect matching
of H1 − F . ��

Lemma 3.3 A toroidal grid graph C3 × Cm (m ≥ 10) is not k-resonant for any
integer k � 4.

Proof Let h1, h2, h3 and h4 be the four vertex-disjoint quadrangles of C3 × Cm (m ≥
10) as in Fig. 7. Then C3 × Cm − h1 − h2 − h3 − h4 contains a component with seven
vertices, so it has no perfect matchings. ��
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Fig. 6 H1 − F has a perfect matching {e′, e′′}, where the quadrangles inserted cycles belong to F

Fig. 7 A toroidal grid graph
C3 × Cm with m ≥ 10
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Fig. 8 An illustration for the proof of Lemma 3.4

Lemma 3.4 A toroidal grid graph C3 × Cm (m = 6, 8) is k-resonant (k � 1).

Proof Let F be any set of vertex-disjoint quadrangles of C3 × Cm . Firstly, suppose
m = 8. C3 × C8 contains eight columns consisting of three quadrangles (illustrated
in Fig. 8). Since the quadrangles in two adjacent columns are pairwise adjacent, there
are at most four quadrangles in F . If there are exactly four quadrangles in F , then
C3 × C8 − F has a perfect matching as shown in Fig. 8(1). If there are two adjacent
columns containing no quadrangle of F . Then C3 × C8 can always be divided into
two subgraphs containing all the quadrangles in F which are isomorphic to P3 × P4
and thus are k-resonant (k � 1). Hence C3 × C8 − F has a perfect matching (refer to
Fig. 8(2)).

Secondly, we suppose that m = 6. C3 ×C6 consists of six columns of quadrangles.
By the similar argument as for m = 8, there are at most three quadrangles in F .
Similarly, if there are exactly three quadrangles in F , then C3 × C6 − F has a perfect
matching. If there are two adjacent columns containing no quadrangle of F . Then
divide C3 ×C6 into a P3 × P4 and a P3 × P2, which are k-resonant (k � 1), containing
all the quadrangles in F . Hence C3 × C6 − F has a perfect matching.

In all, C3 × Cm (m = 6, 8) is k-resonant (k � 1). ��

Lemma 3.5 Toroidal grid graphs Cm × Cn (m, n ≥ 5) and C3 × Cm (m ≥ 10) are
3-resonant.
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Fig. 9 An illustration for the
3-resonance of
Cm × Cn (m, n ≥ 5) 1h
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Fig. 10 An illustration for the 3-resonance of C3 × Cm (m ≥ 10)

Proof Firstly, let F be any set of three disjoint quadrangles {h1, h2, h3} of Cm ×
Cn (m, n ≥ 5) which contain m rows and n columns. Suppose n is even. Assume that
h1, h2 and h3 lie in the r1th, r2th and r3th rows, respectively.

If |ri − r j | �= 1 for any i, j ∈ {1, 2, 3}, since P2 × Pn is k-resonant (k ≥ 1), then
both ∪3

i=1ri − h1 − h2 − h3 and Cm × Cn − (∪3
i=1ri ) have perfect matchings.

If h1, h2, h3 are contained in a subgraph H ′ ∼= P4 × Cn consisting of three
consequent rows, then H ′ has a spanning subgraph P4 × Pn containing h1, h2, h3,
which is k-resonant (k � 1). Hence H ′ − F and thus Cm × Cn − F have perfect
matchings.

Otherwise, we assume that exactly two of r1, r2 and r3, say r1 and r2, satisfy that
|r1 − r2| = 1 and |r3 − ri | > 1 for i = 1, 2. Let H ′ = r1 ∪ r2 (∼= P3 ×Cn). See Fig. 9.
Note that H ′ − h1 − e is isomorphic to P3 × Pn−2 which is 1-resonant by Theorem
2.4. Hence H ′ −h1 −h2 has perfect matchings. Cm ×Cn − H ′ −h3 also has a perfect
matching. Thus Cm × Cn − F has perfect matchings.

Then consider C3 × Cm (m ≥ 10). F = {h1, h2, h3} is an arbitrary set of
quadrangles of C3×Cm , in which any two can not lie in two consequent columns. Refer
to Fig. 10. Let c1, c2, c3 be the indices of the columns h1, h2, h3 lie, respectively. If
two of them, say c1 and c2, satisfying |c1−c2| = 2. Let H ′ be the subgraph isomorphic
to P3 × P4 containing h1, h2, which is 2-resonant. Moreover, C3 × Cm − H ′ is
1-resonant. Hence C3 × Cm − F has perfect matchings. If |ci − c j | ≥ 3 for any
i �= j ∈ {1, 2, 3}, then H ′ = C3 × Cm − c1 ∼= C3 × Pm−2 where m − 2 is even.
Since |ci − c j | ≥ 3 for any i �= j ∈ {1, 2, 3}, we can divide H ′ into two subgraphs
isomorphic to C3 × Ps and C3 × Pt , containing h2 and h3, respectively, such that s
and t are even and s + t = m − 2. c1, C3 × Ps and C3 × Pt each has a spanning
subgraph isomorphic to P3 × Pl for l = 2, s, t , respectively. By Theorem 2.4, they
each has a perfect matching after deleting h1, h2 and h3, respectively. The union of
these perfect matchings forms one of C3 × Cm − F .

If F contains less than three squares, it can be treated as the special case for the
above. In all, Cm × Cn (m, n ≥ 5) and C3 × Cm (m ≥ 10) are 3-resonant. ��
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By the above lemmas, the resonance of grid graphs on torus is obtained.

Theorem 3.6 The k-resonance of grid graphs Cm × Cn (m, n � 3 and at least one
of them is even) on torus is given in the following table.

1, 2, 3-Resonant � 4-Resonant

C3 × Cm (m = 6, 8) Yes Yes
C3 × Cm (m ≥ 10) Yes No
C4 × Cm (m ≥ 3) Yes Yes
Cm × Cn(m, n ≥ 5) Yes No

The following corollary is a direct consequence of Theorem 3.6.

Corollary 3.7 Grid graphs on torus are maximally resonant if and only if they are
4-resonant.

4 k-Resonance of grid graphs on cylinder

In this part, k-resonance of grid graphs on cylinder Pm × Cn (m � 2, n � 3 and at
least one of them is even) are discussed.

Pm ×Cn can be obtained from Cm ×Cn by deleting a set of parallel edges (illustrated
in Fig. 11 (1)). In part of the discussion of the k-resonance of Cm × Cn , the existence
of these edges do not alter the results. In fact, P3 × Cn (n = 6, 8), P3 × Cn (n ≥ 10)

and P4 ×Cn on cylinder have the same k-resonance and similar proofs as C3 ×Cn(n =
6, 8), C3 ×Cn (n ≥ 10) and C4 ×Cn on torus. On the other hand, for an arbitrary non-
empty set F of disjoint quadrangles, each component of P2 × Cn − F isomorphic to a
plane grid graph P2 × Pn and hence has perfect matchings. So P2 × Cn is k-resonant
(k � 1). For P3 × C4, let F be an arbitrary set of disjoint quadrangles. Then at most
one quadrangle in F is contained in two adjacent columns. Hence there is a subgraph
P3 × P4 − F with a perfect matching which is also one of P3 × C4 − F (illustrated
in Fig. 11(1)).

Hence we need only discuss the k-resonance of P5 × Cn (n � 4) on cylinder.
Consider P5×C4 first. See Fig. 11(2). Let F be an arbitrary set of disjoint quadrangles.
If there is a row of quadrangles does not contain any element of F , then there is a
subgraph (Pm ×C4)∪ (Pn ×C4)− F (m, n < 5, m +n = 5) with a perfect matching
which is also one of P5 × C4 − F . Otherwise, each row contains a quadrangle of F .
That is just the case illustrated in Fig. 11(2) and P5 ×C4 − F has just two independent
edges. Thus P5 × C4 is k-resonant for any positive integer k.

Then consider the k-resonance of P5 × Cn (n � 6). Similar to the case of Cm ×
Cn (m, n ≥ 5), it is not 4-resonant. Then let F be an arbitrary set of no more than
three disjoint quadrangles. If all the quadrangles in F lie in three consequent columns
which form a subgraph P5 × P4, then P5 × P4 − F together with P5 × Pn−4 have
perfect matchings. Otherwise, P5 × Cn can be divided into two subgraphs P5 × P2
and P5 × Pn−2 (n − 2 � 4) containing all the quadrangles of F (illustrated in the
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Fig. 11 An illustration for the proof of Theorem 4.1

Fig. 11(3)). By Theorem 2.4, these two subgraphs are all 2-resonant. Hence (P5 ×
P2) ∪ (P5 × Pn−2) − F has perfect matchings. Hence, P5 × Cn is 3-resonant.

In all, the k-resonance of grid graphs on cylinder can be characterized as follows.

Theorem 4.1 The k-resonance of grid graphs Pm × Cn (m � 2, n � 3 and at least
one of them is even) on cylinder is given in the following table.

P2 × Cn , P4 × Cn , P3 ×
Cn(n � 8), P5 × C4

P3 × Cn (n ≥ 10), Pm ×
Cn (m, n � 5)

1, 2, 3-Resonant Yes Yes
� 4-Resonant Yes No

Corollary 4.2 A grid graph on cylinder is maximally resonant if and only if it is
4-resonant.
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