On \boldsymbol{k}-resonance of grid graphs on the plane, torus and cylinder

Saihua Liu • Jianping Ou • Youchuang Lin

Received: 29 December 2013 / Accepted: 6 March 2014 / Published online: 18 March 2014
© Springer International Publishing Switzerland 2014

Abstract

Grid graphs on the plane, torus and cylinder are finite 2-connected bipartite graphs embedded on the plane, torus and cylinder, respectively, whose every interior face is bounded by a quadrangle. Let k be a positive integer, a grid graph is k-resonant if the deletion of any $i \leq k$ vertex-disjoint quadrangles from G results in a graph either having a perfect matching or being empty. If G is k-resonant for any integer $k \geq 1$, then it is called maximally resonant. In this study, we provide a complete characterization for the k-resonance of grid graphs $P_{m} \times P_{n}$ on plane, $C_{m} \times C_{n}$ on torus and $P_{m} \times C_{n}$ on cylinder.

Keywords Grid graphs $\cdot k$-Resonant \cdot Maximally resonant
Mathematics Subject Classification 05C70, 05C90

1 Introduction

The concept of resonance originates from the conjugated circuits method which was early found in [29] and [8,9] and Clar's aromatic sextet theory [4] and Randić's conjugated circuit model [21-24]. Then Klein [12] clarified the connection of Clar's aromatic sextet theory with the conjugated circuits method. In mathematics [19], a conjugated circuit is named an alternating cycle. A matching (resp. perfect matching)

[^0]of a graph is a set of its edges such that every vertex of the graph is incident with at most (resp. exactly) one edge in this set. For a graph G with a matching M, an M-alternating cycle is a cycle of which the edges appear alternately in and out of M.

The k-resonance of plane molecular graphs have been investigated extensively [$6,13,15,17,32,35]$. In the investigation of the resonance of some molecular graphs, it was found that the k-resonance of the molecular graphs indicates the stability of the corresponding moleculars a great deal. On the other hand, the k-resonance of graphs seems relating to the study of matchings problems. Besides the plane molecular graphs, graphs on sphere, cylinder, torus and Klein-bottle were also studied extensively [16,26,27,30,31]. We focus on the k-resonance of grid graphs on plane, torus and cylinder in this study.

A plane grid graph is a finite plane 2-connected bipartite graph whose every interior face is bounded by a quadrangle. It is also called polyomino graphs [1], square-cell configurations [7] or chess-boards [5]. Polyomino graphs have useful applications in statistical physics and in modeling problems of surface chemistry (please refer to ref. [7] and the references therein). They are also modelings of many interesting combinatorial subjects, such as hypergraphs [1], domination problem [5], rook polynomials [20], etc. In fact, problems based on perfect matchings was extensively studied on fragments of the square-planar net $[2,10,14,25,34]$. Also, Kivelson developed the conjugated circuits method for the polyomino graphs [11].

A toroidal grid graph (a grid graph on the surface torus) is the product $C_{m} \times C_{n}$ embedded on the torus such that each face is bounded by a quadrangle. A grid graph on the cylinder is a grid graph embedded on the cylinder such that each face, except the two infinite open ends, is bounded by a quadrangle. Let k be a positive integer, a plane grid graph or a toroidal grid graph or a grid graph on cylinder G is k-resonant if the deletion of any $i(\leq k)$ vertex-disjoint quadrangles from G results in a graph either having perfect matchings or being empty.

If G is k-resonant for any integer $k \geq 1$, then it is called maximally resonant. In the paper [17], all maximally resonant plane grid graphs were characterized. In fact, the least integer k such that a k-resonant graph is maximally resonant was determined for all the considered molecular graphs, such as benzenoid systems [35], coronoid systems [3], open-end nanotubes [31], toroidal polyhexes [26,33], Klein-bottle polyhexes [27], fullerene graphs [30], B-N fullerene graphs [32] and other graphs [18,28].

In this paper, we provide a complete characterization for the k-resonance of grid graphs $P_{m} \times P_{n}$ on plane, $C_{m} \times C_{n}$ on torus and $P_{m} \times C_{n}$ on cylinder. As plane grid graphs, the least integer k such that a k-resonant grid graph on torus or cylinder is maximally resonant is 4 .

A k-resonant grid graph should have even vertices. Hence in the grid graphs $P_{m} \times$ $P_{n}, C_{m} \times C_{n}$ and $P_{m} \times C_{n}$ considered here, at least one of m and n is even.

$2 \boldsymbol{k}$-Resonance of plane grid graphs $\boldsymbol{P}_{\boldsymbol{m}} \times \boldsymbol{P}_{\boldsymbol{n}}$

Note that a graph $P_{m} \times P_{n}(m, n \geqslant 2, n \bmod 2=0)$ has perfect matchings. Then the k-resonance of plane grid graphs $P_{m} \times P_{n}(m, n \geqslant 2, n \bmod 2=0)$ can be obtained by the following facts.

Fig. $1 \quad P_{3} \times P_{n}$, where $n \geq 6$

Fig. $2 P_{m} \times P_{n}$, where $m \geq 5, n \geq 6$

P_{n}							
1 P_{m} 2 f_{1} $m-2$ f_{2} $m-1$							

Lemma 2.1 $P_{m} \times P_{n}(m, n \geqslant 2, n \bmod 2=0)$ is 1-resonant.
Proof Let f_{1} be an arbitrary square of $P_{m} \times P_{n}$. Then it belongs to a subgraph isomorphic to $P_{2} \times P_{n}$, which is k-resonant $(k \geqslant 1)$ [17]. The leaving graph has perfect matchings. Hence $P_{m} \times P_{n}$ is 1-resonant.

Lemma 2.2 $P_{m} \times P_{n}(m, n \geqslant 2, n \bmod 2=0)$ is not 2 -resonant if and only if $m=3$ and $n \geq 6$.

Proof $P_{2} \times P_{n}$ and $P_{4} \times P_{n}$ are maximally resonant [17]. Now we should only consider the cases of $P_{3} \times P_{n}(n \geq 6)$ and $P_{m} \times P_{n}(m \geq 5, n \geq 6)$. Clearly, by Fig. 1, one can see that $P_{3} \times P_{n}(n \geq 6)$ is not 2-resonance since $\left(P_{3} \times P_{n}\right)-h_{1}-h_{2}$ leaves an odd component with five vertices.

Now we consider $H \cong P_{m} \times P_{n}(m \geq 5, n \geq 6)$ with $m-1$ rows of squares. Let f_{1} and f_{2} be any two disjoint quadrangles in H. Suppose that r_{1}, r_{2} are the rows that f_{1}, f_{2} lie, respectively (see Fig. 2). If $\left|r_{1}-r_{2}\right| \leq 1$, consider a subgraph H^{\prime} of H isomorphic to $P_{4} \times P_{n}$, which contains both f_{1} and f_{2}. Certainly, $H^{\prime}-f_{1}-f_{2}$ has a perfect matching. On the other hand, $H-H^{\prime}$ has perfect matchings, since its every component is isomorphic to $P_{k} \times P_{n}$ with $k \geqslant 1$ and n even. Hence $H-f_{1}-f_{2}$ has perfect matchings. If $\left|r_{1}-r_{2}\right| \geqslant 2$, then f_{1} and f_{2} are contained in two disjoint subgraphs of H isomorphic to $P_{2} \times P_{n}$, which are k-resonant $(k \geqslant 1)$. And the leaving graph has perfect matchings. Hence $H \cong P_{m} \times P_{n}(m \geq 5, n \geq 6)$ is 2-resonant.

Lemma 2.3 $P_{n} \times P_{m}(m, n \geqslant 2)$ is 3-resonant if and only if it is isomorphic to $P_{2} \times P_{m}(m \geq 2)$ or $P_{4} \times P_{m}(m \geq 3)$.

Proof $P_{2} \times P_{m}$ and $P_{4} \times P_{m}$ are 3-resonant [17]. By lemma 2.2, we know that $P_{3} \times P_{m}(m \geq 6)$ is not 2-resonant. Hence it is not 3-resonant. By Fig. 3, it can be seen that $P_{m} \times P_{n}(m, n \geq 5)$ is not 3-resonant, since by deleting h_{1}, h_{2} and h_{3} there will be an odd component with five vertices.

Fig. $3 P_{m} \times P_{n}$, where $m, n \geq 5$

By Theorems 2.1 in [17], we know that $P_{2} \times P_{n}$ and $P_{4} \times P_{m}(m, n \geq 2)$ is k resonant for any integer $k \geqslant 1$ and $P_{3} \times P_{m}(m \geq 6), P_{m} \times P_{n}(m, n \geq 5)$ are not k-resonant for $k \geqslant 4$. Together with Lemmas 2.1 and $2.2, k$-resonance of plane grid graphs $P_{m} \times P_{n}(m, n \geq 2)$ is obtained.

Theorem 2.4 The k-resonance of plane grid graphs $P_{m} \times P_{n}(m, n \geqslant 2$ and at least one of them is even) is given in the following table.

	$P_{2} \times P_{n}, P_{4} \times P_{n}$	$P_{3} \times P_{n}(n \geq 6)$	$P_{m} \times P_{n}(m, n \geq 5)$
1-Resonant	Yes	Yes	Yes
2-Resonant	Yes	No	Yes
3-Resonant	Yes	No	No
\geqslant 4-Resonant	Yes	No	No

$3 \boldsymbol{k}$-Resonance of grid graphs on torus

A toroidal grid graph $C_{m} \times C_{n}$ embedded on the torus such that each face is bounded a quadrangle can be also obtained from $P_{m} \times P_{n}$ by gluing the pendent half edges with the same labels into one as shown in Fig. 4.

On the other hand, note that for a set F of disjoint faces of a graph G, if $G-F$ has a spanning subgraph with a perfect matching, then $G-F$ has a perfect matching.

Lemma 3.1 A toroidal grid graph $C_{m} \times C_{n}(m, n \geq 5)$ is not k-resonant for any integer $k \geqslant 4$.

Proof Let h_{1}, h_{2}, h_{3} and h_{4} be the four vertex-disjoint quadrangles as shown in Fig. 5. Then $C_{m} \times C_{n}-h_{1}-h_{2}-h_{3}-h_{4}$ has an isolated vertex v when $m, n \geq 5$. So it is not k-resonant for any integer $k \geqslant 4$.

Lemma 3.2 A toroidal grid graph $C_{4} \times C_{m}(m \geq 2)$ is k-resonant $(k \geqslant 1)$.

Fig. 4 A grid graph $C_{m} \times C_{n}$ on torus

Fig. $5 C_{5} \times C_{6}$ on torus

Proof Let F be any set of vertex-disjoint quadrangles of $C_{4} \times C_{m}$ and H denote the subgraph of $C_{4} \times C_{m}$ induced by all the columns of quadrangles containing at least one element of F. Then write $H^{\prime}=C_{4} \times C_{m}-H$. Clearly, every component of H or H^{\prime} is isomorphic to a $C_{4} \times P_{m_{i}}$ for some $m_{i} \geq 1$. H^{\prime} has perfect matchings. We shall show in what follows that for any component H_{1} of H, either $H_{1}-F$ is empty or it has perfect matchings and so the lemma follows.

If H_{1} consists of one column, then $H_{1}-F$ is empty or is a quadrangle with perfect matchings. Now consider the case when H_{1} consists of at least two columns. It is not difficult to see that each column of H_{1} contains a unique quadrangle of F and that all these quadrangles must lie in two separating rows alternatively as in Fig. 6. No matter whether H_{1} has an odd or even number of columns, $H_{1}-F$ consists of two disjoint edges e^{\prime} and $e^{\prime \prime}$ as is illustrated in Fig. 6. These two edges enter into a perfect matching of $H_{1}-F$.

Lemma 3.3 A toroidal grid graph $C_{3} \times C_{m}(m \geq 10)$ is not k-resonant for any integer $k \geqslant 4$.

Proof Let h_{1}, h_{2}, h_{3} and h_{4} be the four vertex-disjoint quadrangles of $C_{3} \times C_{m}(m \geq$ 10) as in Fig. 7. Then $C_{3} \times C_{m}-h_{1}-h_{2}-h_{3}-h_{4}$ contains a component with seven vertices, so it has no perfect matchings.

Fig. $6 \quad H_{1}-F$ has a perfect matching $\left\{e^{\prime}, e^{\prime \prime}\right\}$, where the quadrangles inserted cycles belong to F

Fig. 7 A toroidal grid graph $C_{3} \times C_{m}$ with $m \geq 10$

(1)

(2)

Fig. 8 An illustration for the proof of Lemma 3.4

Lemma 3.4 A toroidal grid graph $C_{3} \times C_{m}(m=6,8)$ is k-resonant $(k \geqslant 1)$.
Proof Let F be any set of vertex-disjoint quadrangles of $C_{3} \times C_{m}$. Firstly, suppose $m=8 . C_{3} \times C_{8}$ contains eight columns consisting of three quadrangles (illustrated in Fig. 8). Since the quadrangles in two adjacent columns are pairwise adjacent, there are at most four quadrangles in F. If there are exactly four quadrangles in F, then $C_{3} \times C_{8}-F$ has a perfect matching as shown in Fig. 8(1). If there are two adjacent columns containing no quadrangle of F. Then $C_{3} \times C_{8}$ can always be divided into two subgraphs containing all the quadrangles in F which are isomorphic to $P_{3} \times P_{4}$ and thus are k-resonant $(k \geqslant 1)$. Hence $C_{3} \times C_{8}-F$ has a perfect matching (refer to Fig. 8(2)).

Secondly, we suppose that $m=6 . C_{3} \times C_{6}$ consists of six columns of quadrangles. By the similar argument as for $m=8$, there are at most three quadrangles in F. Similarly, if there are exactly three quadrangles in F, then $C_{3} \times C_{6}-F$ has a perfect matching. If there are two adjacent columns containing no quadrangle of F. Then divide $C_{3} \times C_{6}$ into a $P_{3} \times P_{4}$ and a $P_{3} \times P_{2}$, which are k-resonant ($k \geqslant 1$), containing all the quadrangles in F. Hence $C_{3} \times C_{6}-F$ has a perfect matching.

In all, $C_{3} \times C_{m}(m=6,8)$ is k-resonant $(k \geqslant 1)$.

Lemma 3.5 Toroidal grid graphs $C_{m} \times C_{n}(m, n \geq 5)$ and $C_{3} \times C_{m}(m \geq 10)$ are 3-resonant.

Fig. 9 An illustration for the 3-resonance of $C_{m} \times C_{n}(m, n \geq 5)$

Fig. 10 An illustration for the 3-resonance of $C_{3} \times C_{m} \quad(m \geq 10)$

Proof Firstly, let F be any set of three disjoint quadrangles $\left\{h_{1}, h_{2}, h_{3}\right\}$ of $C_{m} \times$ $C_{n}(m, n \geq 5)$ which contain m rows and n columns. Suppose n is even. Assume that h_{1}, h_{2} and h_{3} lie in the r_{1} th, r_{2} th and r_{3} th rows, respectively.

If $\left|r_{i}-r_{j}\right| \neq 1$ for any $i, j \in\{1,2,3\}$, since $P_{2} \times P_{n}$ is k-resonant $(k \geq 1)$, then both $\cup_{i=1}^{3} r_{i}-h_{1}-h_{2}-h_{3}$ and $C_{m} \times C_{n}-\left(\cup_{i=1}^{3} r_{i}\right)$ have perfect matchings.

If h_{1}, h_{2}, h_{3} are contained in a subgraph $H^{\prime} \cong P_{4} \times C_{n}$ consisting of three consequent rows, then H^{\prime} has a spanning subgraph $P_{4} \times P_{n}$ containing h_{1}, h_{2}, h_{3}, which is k-resonant $(k \geqslant 1)$. Hence $H^{\prime}-F$ and thus $C_{m} \times C_{n}-F$ have perfect matchings.

Otherwise, we assume that exactly two of r_{1}, r_{2} and r_{3}, say r_{1} and r_{2}, satisfy that $\left|r_{1}-r_{2}\right|=1$ and $\left|r_{3}-r_{i}\right|>1$ for $i=1$, 2. Let $H^{\prime}=r_{1} \cup r_{2}\left(\cong P_{3} \times C_{n}\right)$. See Fig. 9 . Note that $H^{\prime}-h_{1}-e$ is isomorphic to $P_{3} \times P_{n-2}$ which is 1-resonant by Theorem 2.4. Hence $H^{\prime}-h_{1}-h_{2}$ has perfect matchings. $C_{m} \times C_{n}-H^{\prime}-h_{3}$ also has a perfect matching. Thus $C_{m} \times C_{n}-F$ has perfect matchings.

Then consider $C_{3} \times C_{m}(m \geq 10) . F=\left\{h_{1}, h_{2}, h_{3}\right\}$ is an arbitrary set of quadrangles of $C_{3} \times C_{m}$, in which any two can not lie in two consequent columns. Refer to Fig. 10. Let c_{1}, c_{2}, c_{3} be the indices of the columns h_{1}, h_{2}, h_{3} lie, respectively. If two of them, say c_{1} and c_{2}, satisfying $\left|c_{1}-c_{2}\right|=2$. Let H^{\prime} be the subgraph isomorphic to $P_{3} \times P_{4}$ containing h_{1}, h_{2}, which is 2-resonant. Moreover, $C_{3} \times C_{m}-H^{\prime}$ is 1-resonant. Hence $C_{3} \times C_{m}-F$ has perfect matchings. If $\left|c_{i}-c_{j}\right| \geq 3$ for any $i \neq j \in\{1,2,3\}$, then $H^{\prime}=C_{3} \times C_{m}-c_{1} \cong C_{3} \times P_{m-2}$ where $m-2$ is even. Since $\left|c_{i}-c_{j}\right| \geq 3$ for any $i \neq j \in\{1,2,3\}$, we can divide H^{\prime} into two subgraphs isomorphic to $C_{3} \times P_{s}$ and $C_{3} \times P_{t}$, containing h_{2} and h_{3}, respectively, such that s and t are even and $s+t=m-2 . c_{1}, C_{3} \times P_{s}$ and $C_{3} \times P_{t}$ each has a spanning subgraph isomorphic to $P_{3} \times P_{l}$ for $l=2, s, t$, respectively. By Theorem 2.4, they each has a perfect matching after deleting h_{1}, h_{2} and h_{3}, respectively. The union of these perfect matchings forms one of $C_{3} \times C_{m}-F$.

If F contains less than three squares, it can be treated as the special case for the above. In all, $C_{m} \times C_{n}(m, n \geq 5)$ and $C_{3} \times C_{m}(m \geq 10)$ are 3-resonant.

By the above lemmas, the resonance of grid graphs on torus is obtained.
Theorem 3.6 The k-resonance of grid graphs $C_{m} \times C_{n}$ ($m, n \geqslant 3$ and at least one of them is even) on torus is given in the following table.

	1,2, 3-Resonant	$\geqslant 4$-Resonant
$C_{3} \times C_{m}(m=6,8)$	Yes	Yes
$C_{3} \times C_{m}(m \geq 10)$	Yes	No
$C_{4} \times C_{m}(m \geq 3)$	Yes	Yes
$C_{m} \times C_{n}(m, n \geq 5)$	Yes	No

The following corollary is a direct consequence of Theorem 3.6.
Corollary 3.7 Grid graphs on torus are maximally resonant if and only if they are 4-resonant.

$4 \boldsymbol{k}$-Resonance of grid graphs on cylinder

In this part, k-resonance of grid graphs on cylinder $P_{m} \times C_{n}(m \geqslant 2, n \geqslant 3$ and at least one of them is even) are discussed.
$P_{m} \times C_{n}$ can be obtained from $C_{m} \times C_{n}$ by deleting a set of parallel edges (illustrated in Fig. 11 (1)). In part of the discussion of the k-resonance of $C_{m} \times C_{n}$, the existence of these edges do not alter the results. In fact, $P_{3} \times C_{n}(n=6,8), P_{3} \times C_{n}(n \geq 10)$ and $P_{4} \times C_{n}$ on cylinder have the same k-resonance and similar proofs as $C_{3} \times C_{n}(n=$ $6,8), C_{3} \times C_{n}(n \geq 10)$ and $C_{4} \times C_{n}$ on torus. On the other hand, for an arbitrary nonempty set F of disjoint quadrangles, each component of $P_{2} \times C_{n}-F$ isomorphic to a plane grid graph $P_{2} \times P_{n}$ and hence has perfect matchings. So $P_{2} \times C_{n}$ is k-resonant ($k \geqslant 1$). For $P_{3} \times C_{4}$, let F be an arbitrary set of disjoint quadrangles. Then at most one quadrangle in F is contained in two adjacent columns. Hence there is a subgraph $P_{3} \times P_{4}-F$ with a perfect matching which is also one of $P_{3} \times C_{4}-F$ (illustrated in Fig. 11(1)).

Hence we need only discuss the k-resonance of $P_{5} \times C_{n}(n \geqslant 4)$ on cylinder. Consider $P_{5} \times C_{4}$ first. See Fig. 11(2). Let F be an arbitrary set of disjoint quadrangles. If there is a row of quadrangles does not contain any element of F, then there is a subgraph $\left(P_{m} \times C_{4}\right) \cup\left(P_{n} \times C_{4}\right)-F(m, n<5, m+n=5)$ with a perfect matching which is also one of $P_{5} \times C_{4}-F$. Otherwise, each row contains a quadrangle of F. That is just the case illustrated in Fig. 11(2) and $P_{5} \times C_{4}-F$ has just two independent edges. Thus $P_{5} \times C_{4}$ is k-resonant for any positive integer k.

Then consider the k-resonance of $P_{5} \times C_{n}(n \geqslant 6)$. Similar to the case of $C_{m} \times$ $C_{n}(m, n \geq 5)$, it is not 4-resonant. Then let F be an arbitrary set of no more than three disjoint quadrangles. If all the quadrangles in F lie in three consequent columns which form a subgraph $P_{5} \times P_{4}$, then $P_{5} \times P_{4}-F$ together with $P_{5} \times P_{n-4}$ have perfect matchings. Otherwise, $P_{5} \times C_{n}$ can be divided into two subgraphs $P_{5} \times P_{2}$ and $P_{5} \times P_{n-2}(n-2 \geqslant 4)$ containing all the quadrangles of F (illustrated in the

(1)

(2)

(3)

Fig. 11 An illustration for the proof of Theorem 4.1

Fig. 11(3)). By Theorem 2.4, these two subgraphs are all 2-resonant. Hence ($P_{5} \times$ $\left.P_{2}\right) \cup\left(P_{5} \times P_{n-2}\right)-F$ has perfect matchings. Hence, $P_{5} \times C_{n}$ is 3-resonant.

In all, the k-resonance of grid graphs on cylinder can be characterized as follows.
Theorem 4.1 The k-resonance of grid graphs $P_{m} \times C_{n}(m \geqslant 2, n \geqslant 3$ and at least one of them is even) on cylinder is given in the following table.

	$P_{2} \times C_{n}, P_{4} \times C_{n}, P_{3} \times$	$P_{3} \times C_{n}(n \geq 10), P_{m} \times$
	$C_{n}(n \leqslant 8), P_{5} \times C_{4}$	$C_{n}(m, n \geqslant 5)$
1, 2, 3-Resonant	Yes	Yes
\geqslant 4-Resonant	Yes	No

Corollary 4.2 A grid graph on cylinder is maximally resonant if and only if it is 4-resonant.

References

1. C. Berge, C.C. Chen, V. Chvatal, C.S. Seow, Combinatorial properties of polyominoes. Combinatorics 1, 217-224 (1981)
2. R. Chen, Perfect matchings of generalized polyomino graphs. Graphs Comb. 21, 515-529 (2005)
3. R. Chen, X. Guo, k-coverable coronoid systems. J. Math. Chem. 12, 147-162 (1993)
4. E. Clar, The Aromatic Sextet (Wiley, London, 1972)
5. E.J. Cockayne, Chessboard domination problems. Discret. Math. 86, 13-20 (1990)
6. X. Guo, k-Resonace in benzenoid systems, open-ended carbon nanotubes, toroidal polyhexes; and k-cycle resonant graphs. MATCH Commun. Math. Comput. Chem. 56, 439-456 (2006)
7. F. Harary, P.G. Mezey, Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. Quant. Chem. 62, 353-361 (1997)
8. W.C. Herndon, Thermochemical parameters for benzenoid hydrocarbons. Thermochim. Acta. 8, 225237 (1974)
9. W.C. Herndon, Resonance energies of aromatic hydrocarbons: a quantitative test of resonance theory. J. Am. Chem. Soc. 95, 2404-2406 (1973)
10. P. John, H. Sachs, H. Zerntic, Counting perfectmatchings in polyominoes with applications to the dimer problem. Zastosowania Matemetyki (Appl. Math.) 19, 465-477 (1987)
11. S.A. Kivelson, Statistics of holons in the quantum hard-core dimer gas. Phys. Rev. B 39, 259-264 (1989)
12. D.J. Klein, Aromaticity via Kekulé structures and conjugated circuits. J. Chem. Educ. 69, 691-694 (1992)
13. D.J. Klein, Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453-459 (1994)
14. D.J. Klein, T.G. Schmalz, Exact enumeration of long-range-ordered dimer coverings of the squareplanar lattice. Phys. Rev. B 41, 2244-2248 (1990)
15. D.J. Klein, H. Zhu, Resonance in elemental benzenoids. Discret. Appl. Math. 67, 157-173 (1996)
16. Q. Li, S. Liu, H. Zhang, 2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes. Discret. Appl. Math. 159, 800-811 (2011)
17. S. Liu, J. Ou, On maximal resonance of polyomino graphs. J. Math. Chem. 51, 603-619 (2013)
18. S. Liu, H. Zhang, Maximally resonant polygonal systems. Discret. Math. 310, 2790-2800 (2010)
19. L. Lovasz, M.D. Plummer, Matching Theory, Annals of Discrete Math, vol. 29 (North-Holland, Amsterdam, 1986)
20. A. Motoyama, H. Hosoya, King and domino polyominals for polyomino graphs. J. Math. Phys. 18, 1485-1490 (1997)
21. M. Randić, Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68-70 (1976)
22. M. Randić, Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31(11-12), 1477-1481 (1975)
23. M. Randić, Aromaticity and conjugation. J. Amer. Chem. Soc. 99, 444-450 (1977)
24. M. Randić, Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103(9), 3449-3605 (2003)
25. H. Sachs, Counting Perfect Matchings in Lattice Graphs, Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990)
26. W.C. Shiu, P.C.B. Lam, H. Zhang, k-Resonance in toroidal polyhexes. J. Math. Chem. 38(4), 451-466 (2005)
27. W.C. Shiu, H. Zhang, A complete characterization for k-resonant Klein-bottle polyhexes. J. Math. Chem. 43, 45-59 (2008)
28. W.C. Shiu, H. Zhang, S. Liu, Maximal resonance of cubic bipartite polyhedral graphs. J. Math. Chem. 48, 676-686 (2010)
29. W.T. Simpson, On the use of structures as an aid in understanding π-electron spectra. J. Am. Chem. Soc. 75, 597-603 (1953)
30. D. Ye, Z. Qi, H. Zhang, On k-resonant fullerene graphs. SIAM J. Discret. Math. 23(2), 1023-1044 (2009)
31. F. Zhang, L. Wang, k-Resonance of open-ended carbon nanotubes. J. Math. Chem. 35(2), 87-103 (2004)
32. H. Zhang, S. Liu, 2-resonance of plane bipartite graphs and its applications to boron-nitrogen fullerenes. Discret. Appl. Math. 158, 1559-1569 (2010)
33. H. Zhang, D. Ye, k-resonant toroidal polyhexes. J. Math. Chem. 44(1), 270-285 (2008)
34. H. Zhang, F. Zhang, Perfect matchings of polyomino graphs. Graphs Comb. 13, 295-304 (1997)
35. M. Zheng, k-Resonant benzenoid systems. J. Mol. Struct. (Theochem) 231, 321-334 (1991)

[^0]: Supported by NNSF of China (Grant Nos. 11201404, 11301397), NSF of Guandong Province (S2012010010815), Youth Foundation of Wuyi University (2013zk14).
 S. Liu (\triangle) • J. Ou • Y. Lin

 Department of Mathematics, Wuyi University, Jiangmen 529020, People's Republic of China
 e-mail: lsh1808@163.com
 J. Ou
 e-mail: oujp@263.net

